[Machine Learning] 2주차 스터디 - Multi variable linear regression & Logistic Regression
Parco2022. 10. 10. 23:02
04 Multi-variable linear regression
Hypothesis
Cost function
Matrix multiplication
Hypothesis using matrix
앞 matrix의 열의 개수와 뒤 matrix의 행의 개수가 일치해야 함
Many x instances
data의 instance가 많은 경우에도 동일하게 표현 가능
matrix를 쓰는 큰 장점
Hypothesis using matrix (n output)
n은 instance의 개수, 2는 결과 값의 개수
이 때 W[?, ?] => [3, 2]
WX vs XW
Lecture (theory)
Implementation (TensorFlow) 행렬 계산이기 때문에
Code
import tensorflow as tf
import numpy as np
# data and label
x1 = [ 73., 93., 89., 96., 73.]
x2 = [ 80., 88., 91., 98., 66.]
x3 = [ 75., 93., 90., 100., 70.]
Y = [152., 185., 180., 196., 142.]
# random weights
w1 = tf.Variable(tf.random.normal([1]))
w2 = tf.Variable(tf.random.normal([1]))
w3 = tf.Variable(tf.random.normal([1]))
b = tf.Variable(tf.random.normal([1]))
learning_rate = 0.000001
for i in range(1000+1):
# tf.GradientTape() to record the gradient of the cost function
with tf.GradientTape() as tape:
hypothesis = w1 * x1 + w2 * x2 + w3 * x3 + b
cost = tf.reduce_mean(tf.square(hypothesis - Y))
# calculates the gradients of the cost
w1_grad, w2_grad, w3_grad, b_grad = tape.gradient(cost, [w1, w2, w3, b])
# update w1,w2,w3 and b
w1.assign_sub(learning_rate * w1_grad)
w2.assign_sub(learning_rate * w2_grad)
w3.assign_sub(learning_rate * w3_grad)
b.assign_sub(learning_rate * b_grad)
if i % 50 == 0:
print("{:5} | {:12.4f}".format(i, cost.numpy()))
import tensorflow as tf
import numpy as np
data = np.array([
# X1, X2, X3, y
[ 73., 80., 75., 152. ],
[ 93., 88., 93., 185. ],
[ 89., 91., 90., 180. ],
[ 96., 98., 100., 196. ],
[ 73., 66., 70., 142. ]
], dtype=np.float32)
# slice data
X = data[:, :-1]
y = data[:, [-1]]
W = tf.Variable(tf.random.normal((3, 1)))
b = tf.Variable(tf.random.normal((1,)))
learning_rate = 0.000001
# hypothesis, prediction function
def predict(X):
return tf.matmul(X, W) + b
print("epoch | cost")
n_epochs = 2000
for i in range(n_epochs+1):
# tf.GradientTape() to record the gradient of the cost function
with tf.GradientTape() as tape:
cost = tf.reduce_mean((tf.square(predict(X) - y)))
# calculates the gradients of the loss
W_grad, b_grad = tape.gradient(cost, [W, b])
# updates parameters (W and b)
W.assign_sub(learning_rate * W_grad)
b.assign_sub(learning_rate * b_grad)
if i % 100 == 0:
print("{:5} | {:10.4f}".format(i, cost.numpy()))